Проводники и диэлектрики в электрическом поле

1. Проводники в электрическом поле

Напомним, что заряженные частицы, которые могут перемещаться в веществе, называют свободными зарядами.

Если поместить проводник в электрическое поле, то находящиеся в нем свободные заряды придут в движение и в проводнике возникнет направленное движение зарядов, то есть электрический ток. Проводники потому так и называются, что они проводят электрический ток.

Лучшие проводники — металлы. Свободными зарядами в металлах являются свободные электроны. Поскольку электроны имеют отрицательный

электрический заряд, действующая на них со стороны электрического поля сила направлена противоположно напряженности электрического поля.

За направление электрического тока принимают направление движения положительных зарядов. Поэтому в металлах направление электрического тока противоположно направлению движения свободных зарядов — электронов (рис. 52.1).

Внесем, например, металлический шар в однородное электрическое поле (рис. 52.2).

? 1. В каком направлении будут двигаться при этом свободные электроны? Каким будет направление кратковременного электрического тока?

В результате на одной стороне шара появится избыток электронов, то есть возникнет отрицательный заряд, а на другой его стороне — недостаток электронов, то есть возникнет положительный заряд (рис. 52.3).

? 2. Объясните, почему поле, созданное этими зарядами внутри проводника, направлено противоположно внешнему полю.

Свободные электроны будут двигаться до тех пор, пока на них будет действовать сила со стороны электрического поля.

? 3. Объясните, почему равновесие зарядов в проводнике возможно только при условии, что напряженность электрического поля внутри проводника равна нулю (см. рис. 52.3).

Перераспределение зарядов в проводнике, в результате которого напряженность электрического поля внутри проводника обращается в нуль, называют электростатической индукцией.

При равновесии зарядов напряженность электрического поля внутри проводника равна нулю:

= 0.

Вследствие принципа суперпозиции полей перераспределение зарядов в проводнике изменяет и поле вне проводника. В результате линии напряженности поля вне проводника деформируются.

? 4. Объясните, почему вблизи поверхности проводника линии напряженности электрического поля перпендикулярны поверхности проводника (см. рис. 52.3). Подсказка.

Когда заряды в проводнике находятся в равновесии, на них не действует сила, направленная вдоль поверхности проводника (иначе заряды двигались бы вдоль поверхности проводника).

При равновесии электрических зарядов в проводнике они расположены всегда на поверхности проводника. Причем это справедливо как для незаряженного, так и для заряженного проводника.

Электростатическая защита

При равновесии зарядов напряженность электрического поля равна нулю не только в сплошном изолированном проводнике, но и внутри полого проводника. По этой причине, например, напряженность поля внутри однородно заряженной сферы равна нулю (если внутри сферы нет заряженных тел).

Это свойство проводников в электрическом поле используют для сования электростатической защиты: например, чувствительные к электрическому полю приборы заключат в металлические ящики. Причем я этого не обязательно даже, чтобы стенки ящиков были сплошными: достаточно использовать металлическую сетку, которую называют иногда «сеткой Фарадея» (рис. 52.4).

Электростатическую защиту используют также, чтобы защитить людей, работающих в сильном электрическом поле: в таком случае металлической сеткой окружают пространство, в котором работают люди.

2. Диэлектрики в электрическом поле

Как вы уже знаете, в диэлектриках нет свободных зарядов. Однако это не значит, что в них вообще нет заряженных частиц: ведь в атомах и молекулах диэлектриков, как и любых других веществ, есть положительно заряженные ядра и отрицательно заряженные электроны.

В диэлектриках все электроны сильно связаны со своими атомами, поэтому их называют «связанными электронами». Но под действием внешнего электрического поля молекулы диэлектриков поворачиваются или изменяют форму (деформируются).

Рассмотрим подробнее, как это происходит в диэлектриках разного вида.

Полярные диэлектрики. В молекулах некоторых веществ центры распределения положительных и отрицательных зарядов не совпадают.

Например, в молекуле воды, состоящей из одного атома кислорода и двух атомов водорода, электроны атомов водорода большую часть времени проводят вблизи атома кислорода, в результате чего возле атома кислорода образуется отрицательный полюс, а возле атомов водорода — положительный полюс.

Такие диэлектрики называют полярными, потому что у молекул этих диэлектриков есть два полюса зарядов — положительный и отрицательный (рис. 52.5, а). Под действием электрического поля молекулы полярных диэлектриков поворачиваются (рис.

52.5, б) и ориентируются вдоль линий напряженности поля (рис. 52.5, в).

Неполярные диэлектрики. Диэлектрики, в молекулах которых центры распределения положительных и отрицательных зарядов совпадают, называют неполярными (рис. 52.6, а).

К ним относятся, например, многие газы.

Под действием внешнего электрического поля положительные и отрицательные заряды в молекуле «растаскиваются» в противоположные стороны. В результате центры распределения положительных и отрицательных зарядов перестают совпадать (рис. 52.6, б).

Деформированная молекула с точи зрения распределения зарядов становится подобной полярной молекуле, ориентированной вдоль линий напряженности поля.

Поляризация диэлектриков

Итак, под действием внешнего электрического поля молекулы как полярных, так и неполярных диэлектриков выстраиваются по направлению напряженности внешнего электрического поля.

Это явление называют поляризацией диэлектрика. В результате поляризации диэлектрика на его поверхности появляются заряды. Как мы уже говорили, эти заряды называют связанными, потому что они обусловлены смещением заряда только внутри молекул (а не во всем образце, как это происходит при движении свободных зарядов в проводнике).

На рисунке 52.7 схематически показано, как в результате поляризации диэлектрика на его поверхности появляются связанные заряды.

Мы видим, что положительные и отрицательные заряды, образовавшиеся вследствие поляризации, внутри диэлектрика компенсируют друг друга. А на поверхности диэлектрика такой компенсации нет: поэтому и возникают поверхностные заряды.

Рассмотрим теперь, как изменяется напряженность электрического поля при внесении в него диэлектрика вследствие появления связанных зарядов.

Заметим, что напряженность поля Поляр, созданного связанными зарядами, направлена противоположно напряженности Внеш внешнего электрического поля (см. рис. 52.7).

Поэтому согласно принципу суперпозиции поле, созданное связанными зарядами, уменьшает напряженность поля внутри диэлектрика (однако не до нуля, как в случае проводника).

Таким образом,

Вследствие поляризации диэлектрика напряженность электрического поля внутри диэлектрика уменьшается.

Благодаря поляризации незаряженные диэлектрики притягиваются к заряженному телу независимо от знака его заряда.

Дело в том, что электрическое поле вокруг заряженных тел неоднородно: чем ближе к заряженному телу, тем больше напряженность поля.

Когда незаряженный диэлектрик вносят в электрическое поле, на его поверхности появляются связанные заряды противоположных знаков. В результате на разные части диэлектрика со стороны поля действуют противоположно направленные силы (рис. 52.8).

И в неоднородном поле «побеждает» та сила, которая действует на заряды, находящиеся в более сильном поле, то есть находящиеся ближе к заряженному телу. Поэтому незаряженное тело притягивается к заряженному.

Теперь становится понятным, почему электрическое отталкивание заметили только через две тысячи лет после того, как обнаружили электрическое притяжение.

Ведь чтобы тела притягивались, достаточно, чтобы заряжено было только одно из них, причем зарядом любого знака. А отталкиваются тела лишь тогда, когда они оба заряжены, причем обязательно одноименно.

? 5. В описанном в предыдущем параграфе опыте по визуализации линий напряженности было использовано то, что состоящие из диэлектрика продолговатые тела ориентируются в электрическом поле вдоль линий напряженности. Объясните, почему это происходит.

Диэлектрическая проницаемость

Величину, которая показывает, во сколько раз уменьшатся напряженность внешнего электрического поля внутри однородного диэлектрика, называют его диэлектрической проницаемостью и обозначают ε.

Значения диэлектрической проницаемости для разных веществ могут очень сильно различаться.

Например, для воздуха ε = 1,0006, то есть очень мало отличается от единицы. Очень близка к единице и диэлектрическая проницаемость других газов. Обусловлено это главным образом малой концентрацией молекул в газах.

Значение диэлектрической проницаемости большинства жидкостей и твердых тел — от нескольких единиц до нескольких десятков. Сравнительно велика диэлектрическая проницаемость воды: ε = 81.

Но есть вещества (сегнетоэлектрики), у которых диэлектрическая проницаемость достигает десятков и сотен тысяч.

? 6. Металлическому шару радиусом 10 см сообщили положительный заряд 20 нКл и после этого поместили в большой сосуд с водой. а) Сделайте в тетради схематический рисунок, на котором изобразите заряд шара и связанные заряды, возникшие вследствие поляризации воды. б) Чему будет равна напряженность электрического поля на расстоянии от центра шара, равном 5 см? 15 см?

25 см?

Уменьшение силы взаимодействия заряженных тел, погруженных в диэлектрик. Поскольку взаимодействие заряженных тел осуществляется посредством электрического поля, а поле в диэлектрике уменьшается в ε раз, то в ε раз уменьшается и сила взаимодействия заряженных тел, полностью погруженных в однородный диэлектрик. Например, для очечных зарядов, находящихся в однородном диэлектрике с диэлектрической проницаемостью ε, закон Кулона принимает вид

? 7. Чему равна диэлектрическая проницаемость жидкости, если погруженные в нее небольшие шарики с зарядом 30 нКл каждый взаимодействуют с силой 7,8 мкН? Расстояние между шариками равно 20 см.

Увеличение силы взаимодействия заряженных тел, между которыми помещен диэлектрик. Если расположить диэлектрик между заряженными телами, то силы, действующие на каждое заряженное тело, увеличатся.

? 8. Объясните, почему это происходит. Подсказка. Воспользуйтесь рисунком 52.9.

Дополнительные вопросы и задания

9. Два одинаковых заряженных шарика подвешены на нитях равной длины в одной точке, При этом нити отклонены от вертикали на некоторый угол. Когда всю эту систему погрузили в жидкий диэлектрик, угол отклонения нитей не изменился. а) Изобразите на чертеже все силы, действующие на один из шариков до погружения в диэлектрик и после этого. б) Во сколько раз плотность шариков больше плотности диэлектрика, если его диэлектрическая проницаемость равна 3?

10. Как изменится сила взаимодействия двух заряженных тел, если поместить между ними незаряженный проводник, который не касается этих тел?


1 Star2 Stars3 Stars4 Stars5 Stars (2 votes, average: 3,50 out of 5)

Проводники и диэлектрики в электрическом поле