Задача “встреча”. Аналитический способ решения



Теперь решим задачу из предыдущего параграфа другим способом – аналитическим. Посмотрим на рис. 20 и вспомним, что было сделано за первые три шага решения этой задачи.

Шаг 1. Мы ввели систему отсчета: 1) выбрали началом отсчета дерево, от которого начинал свое движение пешеход; 2) направили координатную ось вдоль дороги в направлении движения пешехода; 3) включили часы (секундомер) в момент начала движения тел.

Шаг 2. Были определены начальные координаты пешехода (xп0 = 0) и велосипедиста (xв0= 20 м).

Шаг 3. Используя введенную систему отсчета,



мы определили значения скоростей движения пешехода (vп = 1 м/с) и велосипедиста (vв = -3 м/с).

Таким образом, первые три шага решения задачи не зависят от того, каким способом (графическим или аналитическим) мы собираемся ее решать. Но уже следующий шаг будет отличаться от того, что мы делали при графическом способе решения.

Шаг 4 (аналитический). Запишем в аналитическом виде законы движения тел, учитывая известные данные. Поскольку в задаче движутся два тела (пешеход и велосипедист), то мы получаем два закона движения:

Xп = 0 + 1 – t, xв = 20 – 3 – t.

Шаг 5 (аналитический). Представим в виде уравнения

условие задачи – встречу велосипедиста и пешехода. Встреча двух тел означает, что положения тел в пространстве совпадут в некоторый момент времени t = tвстр, т. е. в этот момент времени совпадут их координаты.

Поэтому условие встречи будет иметь вид:

Xп = xв.

Шаг 6 (аналитический). Запишем вместе полученные в шагах 4 и 5 выражения, присвоив каждому из них свои номер и название. xп = 0 + 1 – t, (1) (закон движения пешехода) xв = 20 – 3 – t, (2) (закон движения велосипедиста) xп = xв. (3) (условие встречи пешехода и велосипедиста)

Шаг 7 (аналитический). Решение уравнений.

Для того чтобы найти значение времени t в интересующий нас момент встречи, воспользуемся условием встречи пешехода и велосипедиста – уравнением (3). Оно предполагает равенство координат двух тел. Подставим в него выражения для xп и xв из уравнений (1) и (2):

0 + 1 – t = 20 – 3 – t

Приведем подобные слагаемые и решим уравнение:

(1+3) – t = 20, t = 20/4 = 5 (с).

Таким образом, мы установили, что встреча пешехода и велосипедиста состоится через 5 с после начала движения.

Теперь определим координату точки, в которой состоится встреча. Для этого подставим полученное значение момента встречи tвстр = 5 с в закон движения пешехода – уравнение (1):

Xп = 0 + 1 – tвстр = 0 + 1 – 5 = 5 (м).

Это означает, что в момент встречи координата пешехода будет равна xп = 5. Следовательно, встреча произойдет в 5 м от начала отсчета – дерева, от которого начал движение пешеход.

Ясно, что координату места встречи можно было определить, подставив время tвстр = 5 с и в закон движения велосипедиста – уравнение (2):

Xв = 20 – 3 – tвстр = 20 – 3 – 5 = 5 (м).

Естественно, мы получили то же самое значение хвстр, так как координаты пешехода и велосипедиста в момент встречи совпадают.

Итоги При аналитическом способе решения задачи “встреча” момент встречи и координата места встречи определяются из равенства координат в законах движения тел, записанных в аналитическом виде.

Упражнения

1. Определите аналитическим способом время и место встречи пешехода и велосипедиста (начните с шага 3) в выбранной нами ранее системе отсчета, связанной с деревом, если: а) значение скорости пешехода осталось прежним vп = 1 м/с, а велосипедист едет ему навстречу со скоростью |vв| = 4 м/с; б) значение скорости пешехода vп = 3 м/с, а велосипедист едет со скоростью, значение которой vв = -7 м/с.

2. Выполните предыдущее упражнение, решая задачу графическим способом.

3. Определите аналитическим способом время и координату встречи пешехода и велосипедиста, которые движутся навстречу друг другу со скоростями |vп| = 2 м/с и |vв| = 8 м/с, если начальное расстояние между ними l = 160 м и они начинают движение одновременно. (Начните решение с шага 1.)

4. Сформулируйте условие и решите задачу о встрече велосипедиста и мотоциклиста, изображенных в момент времени t = 0 на рис. 24. условие задачи о встрече велосипедиста и мотоциклиста



Задача “встреча”. Аналитический способ решения