Удельная теплоемкость
Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 г, а в другой — растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок (рис. 74). Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрее.
Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.
Таким образом, для нагревания одной и той же массы разных веществ до одинаковой температуры требуется
Так, например, чтобы увеличить на 1 °С температуру воды массой 1 кг, требуется количество теплоты, равное 4200 Дж, а для нагревания на 1° С такой же массы подсолнечного масла необходимо количество теплоты, равное 1700 Дж.
Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 °С, называется удельной теплоемкостью этого вещества.
У каждого вещества своя удельная теплоемкость. Обозначается она латинской буквой C, а измеряется в джоулях на килограмм-градус (Дж/(кг*°С)):
C — удельная теплоемкость.
Удельные теплоемкости некоторых веществ можно найти в таблице 8.
Из таблицы, например, видно, что удельная теплоемкость свинца равна 140 Дж/(кг*°С). Это число показывает, что для нагревания 1 кг свинца на 1 °С требуется количество теплоты, равное 140 Дж. Точно такое же (по модулю) количество теплоты будет выделено этой массой свинца при его охлаждении на 1 °С.
Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды 4200 Дж/(кг*°С), а удельная теплоемкость льда 2100 Дж/(кг*°С); алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг*°С), а в жидком — 1080 Дж/(кг*°С).
Заметим, что вода имеет очень большую удельную теплоемкость (см. табл. 8). Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество теплоты.
Благодаря этому в тех местах, которые расположены близко от больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.
1. Опишите опыт, показывающий, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого оно состоит. 2. Какую величину называют удельной теплоемкостью? 3. Удельная теплоемкость бумаги равна 1500 Дж/(кг*°С).
Что это означает? 4. Каким образом большая удельная теплоемкость воды сказывается на климате?
Related posts:
- Применение уравнения теплового баланса 1. Первый закон термодинамики и уравнение теплового баланса До сих пор мы рассматривали первый закон термодинамики применительно к газам. Отличительной особенностью газа является то, что его объем может значительно изменяться. Поэтому согласно первому закону термодинамики переданное газу количество теплоты Q равно сумме совершенной газом работы и изменения его внутренней энергии: Q = ∆U + Aг. […]...
- Количество теплоты Изменить внутреннюю энергию газа в цилиндре можно не только совершая работу, но и нагревая газ (рис. 43). Если закрепить поршень, то объем газа не будет изменяться, но температура, а следовательно, и внутренняя энергия будут возрастать. Процесс передачи энергии от одного тела к другому без совершения работы называют теплообменом или теплопередачей. Энергию, переданную телу в результате […]...
- Задачи и упражнения к главе 4 «Внутренняя энергия» 115. В один стакан налили 100 мл холодной воды, в другой — такое же количество горячей воды. В каком стакане вода обладает большей внутренней энергией? 116. Что происходит с внутренней энергией человека, когда после жара у него восстанавливается нормальная температура? 117. Почему, если быстро скользить вниз по шесту или канату, можно обжечь руки? 118. При […]...
- Расчет количества теплоты, необходимого для нагревания тела и выделяемого им при охлаждении Чтобы научиться рассчитывать количество теплоты, которое необходимо для нагревания тела, установим сначала, от каких величин оно зависит. Из предыдущего параграфа мы уже знаем, что это количество теплоты зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости): Q зависит от C. Но это еще не все. Если мы хотим подогреть воду в […]...
- Задачи и упражнения к главе 5 «Изменение агрегатных состояний вещества» 153. Можно ли в цинковом сосуде расплавить алюминий? Почему? 154. Можно ли в медном сосуде расплавить золото? Почему? 155. Тающий лед принесли в помещение, температура воздуха в котором 0 °С. Будет ли лед в этом помещении продолжать таять? 156. В воду, имеющую температуру 0 °С, бросили кусок льда той же температуры. Будет ли лед таять […]...
- Применение первого закона термодинамики к газовым процессам 1. Изопроцессы и адиабатный процесс Напомним, что согласно первому закону термодинамики количество теплоты Q, переданное газу, связано с изменением внутренней энергии газа ∆U и работой газа Aг соотношением Q = ∆U + Aг. (1) Часто требуется применять первый закон термодинамики к газовым процессам, представляющим собой последовательность изопроцессов (иногда добавляется еще адиабатный процесс). Рассмотрим, как находить […]...
- Температура и теплота В старину на Руси сведения о погоде записывали так: «1657 год, Генваря, 30-го дня, пяток. День был до обеда холоден и ведрен, а после обеда оттепелен, в ночи было ветрено». В то время еще не было термометров. Если требовалось отметить температуру воздуха в зимний день, то записывали так: «Мороз мал» или «Мороз лютый». Первые термометры […]...
- Количество теплоты, необходимое для плавления тела и выделяющееся при его кристаллизации В процессе плавления температура вещества не изменяется Вся получаемая им энергия при этом тратится на разрушение кристаллической решетки и увеличение потенциальной энергии молекул тела. Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить 1 кг льда, […]...
- Уравнение состояния идеального газа 1. Закон Авогадро Из уравнения Клапейрона (см. предыдущий параграф) следует, что в процессах, происходящих с данной массой газа, произведение давления газа p на его объем V, деленное на абсолютную температуру T газа, постоянно: (pV)/T = const. Однако если масса газа в процессе изменилось, то значение выражения (pV)/T тоже изменится! Это очень легко проверить. Поставим опыт […]...
- Количество теплоты, необходимое для парообразования и выделяющееся при конденсации Если, добившись кипения воды в сосуде, выключить под ним нагреватель (см. рис. 82), кипение воды быстро прекратится. Температура воды начнет понижаться, и через некоторое время она станет такой же, как у окружающего воздуха. Для того чтобы вода не переставала кипеть, ее температура должна поддерживаться неизменной. А для этого вода должна непрерывно получать достаточное количество теплоты. […]...
- Масса молекул. Постоянная Авогадро Масса молекулы воды. Массы отдельных молекул и атомов очень малы. Например, в 1 г воды содержится 3,7 — 1022 молекул. Следовательно, масса одной молекулы равна: . (1.1) Массу такого же порядка имеют и молекулы других веществ, исключая огромные молекулы органических веществ. Относительная молекулярная масса. Так как массы молекул очень малы, удобно использовать в расчетах не […]...
- Первый закон термодинамики 1. Внутренняя энергия газа Из курса физики основной школы вы знаете, что сумму кинетической энергии хаотического движения частиц и потенциальной энергии их взаимодействия называют внутренней энергией. Внутренняя энергия U данной массы одноатомного идеального газа равна произведению средней кинетической энергии одной молекулы на число молекул N: U = N. ? 1. Объясните, почему внутренняя энергия U […]...
- Тепловые двигатели. Второй закон термодинамики 1. Принцип действия и основные элементы теплового двигателя В курсе физики основной школы вы уже познакомились с различными видами тепловых двигателей и их устройством. Тепловые двигатели сыграли большую роль в истории человечества и сохраняют огромное значение сегодня. Они движут автомобили, вращают турбины тепловых электростанций, разгоняют космические корабли. Принцип действия теплового двигателя Тепловые двигатели названы так […]...
- Закон сохранения внутренней энергии и уравнение теплового баланса Согласно уравнению (33.3), изменение внутренней энергии системы равно сумме работы внешних сил и количества теплоты, полученного системой: ΔU = A + Q. Из этого уравнения следует, что если систему тел изолировать от внешних воздействий, то ее внутренняя энергия будет оставаться неизменной, несмотря ни на какие процессы, происходящие внутри системы. Действительно, в этом случае А = […]...
- Работа и мощность тока 1. Работа тока. Закон Джоуля-Ленца Работа тока Работу электрического поля по перемещению свободных зарядов в проводнике называют работой тока. При перемещении заряда q вдоль проводника поле совершает работу A = qU (см. § 53), где U — разность потенциалов на концах проводника. Поскольку q = It, работу тока можно записать в виде A = UIt. […]...
- Количество теплоты, выделяющееся при сгорании топлива Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обычное топливо (уголь, нефть, бензин) содержит углерод. При горении атомы углерода соединяются с атомами кислорода, содержащегося в воздухе, в результате чего образуются молекулы углекислого газа. Кинетическая энергия этих молекул оказывается больше, чем у исходных частиц. Увеличение кинетической энергии молекул в процессе горения и называют выделением […]...
- Разрывы и столкновения 1. Разрыв летящего снаряда В этом параграфе мы будем предполагать, что сопротивлением воздуха можно пренебречь. ? 1. Выпущенный вертикально вверх снаряд разорвался в верхней точке траектории на два осколка массой m1 и m2 (рис. 32.1). Чему равно отношение скоростей осколков после разрыва? (Под скоростями до и после разрыва или столкновения здесь и далее мы понимаем […]...
- Задачи и упражнения к главе 2 «Динамика» 37. При вращении точильного камня все его частицы движутся вместе с ним по окружности. Но как только какая-нибудь частичка отрывается от камня, она начинает двигаться по прямой линии (см. рис. 8). Почему? 38. Почему споткнувшийся человек падает вперед? 39. Может ли тело двигаться в сторону, противоположную направлению действия силы? Что при этом будет происходить с […]...
- Гидростатика 1. Зависимость давления жидкости от глубины Напомним, что давление p определяется соотношением P = F/S, (1) Где F — модуль силы давления, S — площадь поверхности, на которую действует сила давления. Сила давления направлена перпендикулярно поверхности. Давление является скалярной величиной. Его измеряют в Н паскалях (Па): 1 Па = 1 Н/м2. Атмосферное давление равно прим […]...
- Кинетическая энергия Из первых параграфов этой главы следует, что если суммарная работа сил, действующих на тело, положительна, то скорость тела относительно инерциальной системы отсчета увеличивается. Напротив, если эта работа отрицательна, то скорость тела уменьшается. Таким образом, изменение скорости движения тела и работа, совершенная над этим телом, связаны. Найдем эту связь. Пусть на гладкой горизонтальной плоскости в точке […]...
- Движение системы тел. Учет трения со стороны внешних тел 1. Движение тел в одном направлении Движение поезда Пусть поезд едет с постоянной скоростью по горизонтальной дороге. При этом вертикальные силы, действующие на любой из вагонов и на локомотив (сила тяжести и сила нормальной реакции), уравновешивают друг друга. (Тепловоз или электровоз, который тянет поезд.) Рассмотрим горизонтально направленные силы. Начнем с последнего вагона (рис. 23.1). На […]...
- Движение системы тел 1. Гладкая горка и шайба Горка с одной вершиной Пусть на гладком столе покоится гладкая горка массой M и высотой H (рис. 34.1). На нее налетает со скоростью 0 шайба массой m. Двигаясь по горке, шайба не отрывается от нее. Возможны три варианта развития событий. 1) Шайба не достигнет вершины горки и соскользнет по тому […]...
- Движение системы связанных тел без учета трения 1. Движение тел в одном направлении Пусть по гладкому столу под действием горизонтальной силы движутся бруски массой m1 и m2 связанные легкой нерастяжимой нитью (рис. 22.1). ? 1. Используя рисунок 22.1, объясните смысл следующих уравнений: Указание на то, что нить легкая, означает, что массой нити можно пренебречь. В таком случае равнодействующую приложенных к нити сил […]...
- Условия применения закона сохранения импульса Как мы уже говорили, в точности замкнутых систем тел не существует. Поэтому возникает вопрос: в каких случаях можно применять закон сохранения импульса к незамкнутым системам тел? Рассмотрим эти случаи. 1. Внешние силы уравновешивают друг друга или ими можно пренебречь С этим случаем мы уже познакомились в предыдущем параграфе на примере двух взаимодействующих тележек. В качестве […]...
- Движение системы тел. Учет трения между телами системы 1. Тела в начальном состоянии движутся друг относительно друга Пусть на гладком столе лежит доска длиной L и массой mд. На краю доски находится небольшой брусок массой mб (рис. 24.1). Коэффициент трения между бруском и доской μ. В начальный момент доска покоится, а бруску толчком сообщают начальную скорость 0, направленную вдоль доски. Как будут двигаться […]...
- Неравномерное движение по окружности в вертикальной плоскости 1. Груз, подвешенный на нити и стержне Шарик массой m подвешен в точке O на нити длиной l (рис. 33.1). Отведем его на угол 90′ и отпустим без толчка. Шарик начнет двигаться по окружности. Обозначим скорость, с которой шарик проходит положение равновесия (рис. 33.2). ? 1. Используя рисунок 33.2, ответьте на вопросы: а) Какие силы […]...
- Первый закон термодинамики Закон сохранения энергии. К середине XIX в. многочисленные опыты ученых доказали, что механическая энергия никогда не пропадает бесследно. Опускаются гири, вращающие лопасти в сосуде с ртутью, и температура ртути повышается на строго определенное число градусов. Падает молот на кусок свинца, и свинец нагревается тоже вполне определенным образом. На основании множества подобных наблюдений и обобщения опытных […]...
- План-конспект урока по физике. Тема: Количество вещества Цель урока: ввести понятия основных физических величин, которые характеризуют молекулы: количество вещества, относительную и молекулярную массу, постоянную Авагадро; развивать навыки решения вычислительных задач. Ход урока Проверка домашнего задания методом фронтальной беседы 1. Расскажите об истории развития взглядов на природу вещества. 2 Что изучает молекулярная физика? 3 Сформулируйте основные положения молекулярно – кинетической теории (М К […]...
- Оглавление к учебнику по физике за 8 класс С. В. Громова и Н. А. Родиной МЕХАНИЧЕСКИЕ ЯВЛЕНИЯ ГЛАВА 1. КИНЕМАТИКА § 1. Наука о движении тел § 2. Ускорение §3. Скорость при равноускоренном движении §4. Путь при равноускоренном движении §5. Равномерное движение по окружности §6. Период и частота обращения Кроссворд «Повторим пройденное-1» ГЛАВА 2. ДИНАМИКА § 7. Первый закон Ньютона § 8. Второй закон Ньютона § 9. Третий закон Ньютона […]...
- Способы изменения внутренней энергии Внутренняя энергия тела зависит от средней кинетической энергии его молекул, а эта энергия, в свою очередь, зависит от температуры. Поэтому, изменяя температуру тела, мы изменяем и его внутреннюю энергию. При нагревании тела его внутренняя энергия увеличивается, при охлаждении уменьшается. Проделаем опыт. Укрепим на подставке тонкостенную латунную трубку. Нальем в нее немного эфира и плотно закроем […]...
- Масса тела. Плотность вещества Теперь, когда мы знаем, как измерить действующую на тело силу, попробуем одной и той же силой действовать на разные тела. Если вы будете действовать одной и той же силой на небольшое яблоко, баскетбольный мяч и большой арбуз, то убедитесь, что эти тела будут разгоняться по-разному. Значит, несмотря на то что тела испытывают одинаковое действие, они […]...
- Выбор режима утюжки Поскольку изделия изготовлены из разных типов тканей, для глажения необходимо использовать температуру, соответствующую каждой ткани. Чтобы знать, до какой температуры нагрелся утюг, а также для регулирования температуры, каждый современный утюг оборудован Терморегулятором, . На терморегуляторе есть надписи и специальные обозначения, расшифровка которых подана в инструкции. Термостат дает возможность выбрать необходимую температуру для глажения. На утюгах […]...
- Используемые обозначения в учебнике по физике, 8 класс S — путь V — скорость T — время A — ускорение Ν — частота T — период M — масса F — сила P — вес P — импульс A — работа Η — коэффициент полезного действия E — механическая энергия H — высота G — ускорение свободного падения Λ — длина волны T […]...
- Механическая работа. Мощность 1. Определение работы С механической работой (работой силы) вы уже знакомы из курса физики основной школы. Напомним приведенное там определение механической работы для следующих случаев. Если сила направлена так же, как перемещение тела, то работа силы A = Fs (1) В этом случае работа силы положительна. Если сила направлена противоположно перемещению тела, то работа силы […]...
- Строение вещества 1. Основные положения молекулярно-кинетической теории Напомним известные вам из курса физики основной школы сведения о строении вещества. Атомная гипотеза Мысль о том, что вещество состоит из мельчайших частиц, высказал еще древнегреческий философ Демокрит. Греки придумали и название для этих частиц — атомы. (Атом в переводе с греческого означает «неделимый». Но в 20-и веке ученые смогли […]...
- Решение задач по термодинамике Цель урока: продолжить формирование умения выполнять термодинамическое описание процессов: вычисление работы, количества теплоты, внутренней энергии и других параметров системы, развивать навыки самостоятельно мыслить, решать задачи разными способами. Ход урока Проверка домашнего задания методом выполнения тестового задания Вариант – 1 1. Внутренняя масса реального газа… А) Не зависит ни от температуры, ни от объема. Б) Не […]...
- Движение по горизонтали и вертикали 1. Движение по горизонтали Сила направлена горизонтально Пусть к бруску массой m, находящемуся на столе, приложена горизонтально направленная сила , а начальная скорость бруска 0 направлена в ту же сторону, что и сила (рис. 20.1). Коэффициент трения между бруском и поверхностью обозначим μ. (Здесь и далее будем подразумевать горизонтальный стол.) (Чтобы выбрать правильное соотношение сил […]...
- Применение уравнения состояния идеального газа 1. Учет гидростатического давления Сжатие воздуха в сосуде, погруженном в воду Рассмотрим следующую ситуацию. Пустую открытую стеклянную бутылку опускают в воду на глубину h. ? 1. Объясните, почему при погружении бутылки дном вниз воздух из нее выходит пузырьками и бутылка наполняется водой (рис. 46.1). ? 2. Почему при этом бутылка сразу тонет? ? 3. Объясните, […]...
- Твердое, жидкое, газообразное Наука познает строение вещества. На основе этого познания люди, владеющие техникой, научились создавать новые материалы, которые не могла создать природа, причем не вообще новые материалы, а материалы с заданными свойствами. В одном случае этим свойством может быть легкость, в другом — механическая прочность, в третьем — стойкость против коррозии и т. д. Но прежде чем […]...
- Строение вещества В физике не только наблюдают и описывают явления и свойства тел, но и стремятся объяснить, почему они протекают так, а не иначе. Например, почему вода растекается, когда ее проливают на пол, а на горячей сковородке она собирается в капли? Почему газ легко сжать, а твердое тело и жидкость — очень трудно? Почему нагретый кусок стали […]...