План-конспект урока по физике по теме: Закон сохранения энергии
Цель урока: раскрыть сущность закона сохранения и превращения энергии в механических процессах, обозначить границы его действия, показать практическое значение закона.
Ход урока
Проверка домашнего задания проведением самостоятельной работы
Вариант -1 a) Вычислите работу, которую совершает пружина при перемещении груза.
А = — (k Δl²₂/2 – k Δl²₁)
б) Для растяжения пружины на 4мм необходимо совершить работу 0,02Дж. Какую работу надо совершить, чтобы растянуть пружину на 4 см?
А₁
Вариант – 2 а) Вычислите работу силы тяжести при падении тела вертикально вниз.
А = — (m g h2 – m g h1)
б) Человек поднимает ящик массой 10 кг с пола на высоту 1 м, затем переносит ящик, не изменяя высоты, на расстояние 10 м и снова опускает его на пол. Какую работу совершит человек на каждом этапе деятельности? Чему равна полная работа, совершенная человеком?
А1 = m g h; A₂ = 0; A3 = — m g h; A₁ = 100 Дж; A₂ = 0; A3 = — 100 Дж; Aполн = 0
Изучение нового материала
1. Демонстрационные опыты.
А) Опыт с движущейся тележкой, приходящей в движение под действием опускающегося груза.
Б) Наблюдение колебаний шарика, подвешенного на нити.
Рассмотрим пример, когда при совершении работы увеличение кинетической энергии сопровождается убылью потенциальной энергии: A = ΔEk ; A = — ΔEp
Приравнивая правые части уравнений получим: ΔЕк = — ΔЕр; ΔЕк + ΔЕр = 0; Δ (Ек + Ер) = 0
2 Формирование понятия механической энергии системы:
Е = Ек + Ер — механической энергией системы называют величину равную сумме кинетической и потенциальной энергий системы.
3 Формулировка закона сохранения энергии для замкнутых систем.
А) mV²/2 + mgh = const — для системы, состоящей из тела массой m и Земли.
Б) mV²/2 + k·Δl²/2 = const — для системы, состоящей из тела массой m и пружины.
Закрепление изученного материала.
Задача. Тело массой 3 кг свободно падает с высоты 5 м. Найти потенциальную и кинетическую энергию тела на расстоянии 2 м от Земли.
У O 1 Запишем закон сохранения энергии для тела находящегося в состоянии 1 и 2.
m g h₁ = m g h₂ + mV²/2; так как Ek1 = 0; Ek2 = mV²/2
h₁
O 2 Ek2 = m g h₁ — m g h₂ = mg(h₁ — h₂) Ek2 = 3· 10· 2 = 60 (Дж)
h₂
Х
Подведение итогов урока.
Домашнее задание: § 52, 53, упр. 9 № 5,9.
Related posts:
- Краткое содержание Человек-ящик Кобо Абэ Человек-ящик Человек-ящик, сидя в своем ящике, приступает к запискам о человеке-ящике. Он подробно описывает, какой ящик пригоден для человека-ящика, как его нужно оборудовать, чтобы в нем было удобно находиться в любую погоду, какие вещи необходимы человеку-ящику. Наиболее пригоден ящик из гофрированного картона. В ящике следует вырезать окошко и завесить его полиэтиленовой шторкой, разрезанной […]...
- «Человек-ящик» К. Абэ в кратком содержании Человек-ящик, сидя в своем ящике, приступает к запискам о человеке-ящике. Он подробно описывает, какой ящик пригоден для человека-ящика, как его нужно оборудовать, чтобы в нем было удобно находиться в любую погоду, какие вещи необходимы человеку-ящику. Наиболее пригоден ящик из гофрированного картона. В ящике следует вырезать окошко и завесить его полиэтиленовой шторкой, разрезанной пополам: коротким движением […]...
- Закон сохранения энергии в механике 1. Когда механическая энергия сохраняется? Из курса физики основной школы вы уже знаете, что Сумму кинетической и потенциальной энергий называют полной механической энергией. Докажем, что Полная механическая энергия замкнутой системы тел, взаимодействующих посредством сил упругости и тяготения, сохраняется, то есть ее изменение равно нулю: ∆(Ek + Ep) = 0. (1) Это утверждение называют законом сохранения […]...
- Механическая энергия системы тел. Закон сохранения механической энергии Мы изучали различные виды энергии, которыми обладают тела или системы тел. При этом было установлено, что кинетическая энергия определяется движением тел и их массой и зависит от механических параметров системы (масс тел и их скоростей). Потенциальная энергия системы тел определяется их взаимодействием и также зависит от механических параметров (взаимного положения, т. е. координат тел системы, […]...
- Кинетическая энергия Из первых параграфов этой главы следует, что если суммарная работа сил, действующих на тело, положительна, то скорость тела относительно инерциальной системы отсчета увеличивается. Напротив, если эта работа отрицательна, то скорость тела уменьшается. Таким образом, изменение скорости движения тела и работа, совершенная над этим телом, связаны. Найдем эту связь. Пусть на гладкой горизонтальной плоскости в точке […]...
- Система тел. Потенциальная энергия Не только кинетическая энергия определяет величину работы, которую могут совершить тела системы. Действительно, между телами обычно существуют силы взаимодействия. Пусть имеются несколько взаимодействующих друг с другом тел. Будем рассматривать эти тела как нечто целое. В таких случаях говорят, что эти тела образуют систему тел. Все силы, действующие на тела системы, принято разделять на два вида. […]...
- Повторно – обобщающий урок по теме: «Законы сохранения в механике» Цель урока: повторение изученного материала, проверка знаний по основным вопросам темы, совершенствование навыков решения задач различных видов. Ход урока Проверка домашнего задания методом тестирования. Вариант – 1 1. Каков импульс тела, если известно, что тело движется со скоростью V? а масса тела m. A) mV̄²/2 ; Б) mV²/2 ; B) mV ; Г) mV/2 ; […]...
- План-конспект урока по физике по теме: Работа силы тяжести и силы упругости. Потенциальная энергия Цель урока: расширить представление о потенциальной энергии тел как энергии взаимодействия нескольких тел обосновать произвольность выбора нулевого уровня состояния системы, научить учащихся пользоваться математическим выражением потенциальной энергии при решении задач различных типов. Ход урока Проверка домашнего задания методом фронтального опроса 1. Что называется энергией тела? 2. От чего зависит механическая энергия системы тел? 3. В […]...
- Кинетическая энергия и механическая работа 1. Кинетическая энергия Пусть на покоящееся вначале тело массой m действуют постоянные силы, равнодействующую которых обозначим (рис. 29.1). Если перемещение тела равно , работа равнодействующей Aрд = Fs. (1) Индекс «рд» подчеркивает, что речь идет о работе равнодействующей всех приложенных к телу сил. Дело в том, что мы будем использовать сейчас второй закон Ньютона, согласно […]...
- План-конспект урока по физике по теме: Энергия. Кинетическая энергия и её изменение Цель урока: дать представление об энергии как физической величине, зависящий от состояния тела или системы тел, и показать, что изменение энергии при переходе из одного состояния в другое определяется величиной совершенной работы; совершенствовать навыки решения вычислительных задач. Ход работы Проверка домашнего задания методом фронтального опроса 1.Что называется механической работой? 2. В каких единицах измеряется механическая […]...
- Импульс — значит толчок Загляните в словарь иностранных слов: «импульс» — от лат. impulsus — толчок, удар, побуждение». Эффект, производимый ударом, всегда вызывал удивление у человека. Почему тяжелый молот, положенный на кусок металла на наковальне, только прижимает его к опоре, а тот же молот ударом молотобойца плющит металл? А в чем секрет старого циркового трюка, когда сокрушительный удар молота […]...
- Контрольная работа по теме «Законы сохранения в механике» Цель урока: контроль за знаниями и умениями учащихся, приобретенных при изучении темы. Ход урока Организационный момент. Выполнение контрольной работы. Вариант – 1 (уровень – 1) 1 Во время прыжка в длину, мальчик имеющий массу 40 кг развил скорость 5 м/с на высоте 0,5м. Определите потенциальную энергию относительно Земли, импульс мальчика в данный момент, кинетическую энергию […]...
- Задачи и упражнения к главе 2 «Динамика» 37. При вращении точильного камня все его частицы движутся вместе с ним по окружности. Но как только какая-нибудь частичка отрывается от камня, она начинает двигаться по прямой линии (см. рис. 8). Почему? 38. Почему споткнувшийся человек падает вперед? 39. Может ли тело двигаться в сторону, противоположную направлению действия силы? Что при этом будет происходить с […]...
- Масса тела. Плотность вещества Теперь, когда мы знаем, как измерить действующую на тело силу, попробуем одной и той же силой действовать на разные тела. Если вы будете действовать одной и той же силой на небольшое яблоко, баскетбольный мяч и большой арбуз, то убедитесь, что эти тела будут разгоняться по-разному. Значит, несмотря на то что тела испытывают одинаковое действие, они […]...
- Первый закон термодинамики 1. Внутренняя энергия газа Из курса физики основной школы вы знаете, что сумму кинетической энергии хаотического движения частиц и потенциальной энергии их взаимодействия называют внутренней энергией. Внутренняя энергия U данной массы одноатомного идеального газа равна произведению средней кинетической энергии одной молекулы на число молекул N: U = N. ? 1. Объясните, почему внутренняя энергия U […]...
- Условия применения закона сохранения импульса Как мы уже говорили, в точности замкнутых систем тел не существует. Поэтому возникает вопрос: в каких случаях можно применять закон сохранения импульса к незамкнутым системам тел? Рассмотрим эти случаи. 1. Внешние силы уравновешивают друг друга или ими можно пренебречь С этим случаем мы уже познакомились в предыдущем параграфе на примере двух взаимодействующих тележек. В качестве […]...
- Движение системы тел 1. Гладкая горка и шайба Горка с одной вершиной Пусть на гладком столе покоится гладкая горка массой M и высотой H (рис. 34.1). На нее налетает со скоростью 0 шайба массой m. Двигаясь по горке, шайба не отрывается от нее. Возможны три варианта развития событий. 1) Шайба не достигнет вершины горки и соскользнет по тому […]...
- Второй закон Ньютона Прежде чем сформулировать один из важнейших законов механики, подведем итог приобретенным знаниям. Напомним, что пока мы ведем разговор только о точечных телах. При наблюдении за точечным телом из инерциальной системы отсчета выполняются следующие правила (рис. 85). Если сумма всех сил, действующих на тело, равна нулю, то это тело движется равномерно прямолинейно или покоится. Иначе говоря, […]...
- Потенциальная энергия 1. Определение потенциальной энергии В предыдущем параграфе мы говорили о работе, которую может совершить тело за счет уменьшения своей скорости, а теперь нас будет интересовать работа, которую может совершить тело или система тел вследствие изменения положения тел. Рассмотрим примеры. Работа поднятого груза. Когда подвешенный на тросе груз равномерно движется вниз, он действует на трос силой, […]...
- Импульс. Закон сохранения импульса 1. Импульс В некоторых случаях удается исследовать взаимодействие тел, не используя выражения для сил, действующих между телами. Это возможно благодаря тому, что существуют физические величины, которые остаются неизменными (сохраняются) при взаимодействии тел. В этой главе мы рассмотрим две такие величины — импульс и механическую энергию. Начнем с импульса. Физическую величину , равную произведению массы тела […]...
- План-конспект урока по физике по теме: Третий закон Ньютона Цель урока: выяснить основные закономерности взаимодействия тел, показать практическое значение 3 закона Ньютона, продолжить формирование умений применять этот закон для решения задач. Ход урока Проверка домашнего задания методом фронтального опроса. — Что называется силой ? -Какие силы в механике считаются равными? — Предложите способ измерения неизвестной силы. — Экспериментально обоснуйте утверждение о том, что модуль […]...
- Движение системы связанных тел без учета трения 1. Движение тел в одном направлении Пусть по гладкому столу под действием горизонтальной силы движутся бруски массой m1 и m2 связанные легкой нерастяжимой нитью (рис. 22.1). ? 1. Используя рисунок 22.1, объясните смысл следующих уравнений: Указание на то, что нить легкая, означает, что массой нити можно пренебречь. В таком случае равнодействующую приложенных к нити сил […]...
- Разрывы и столкновения 1. Разрыв летящего снаряда В этом параграфе мы будем предполагать, что сопротивлением воздуха можно пренебречь. ? 1. Выпущенный вертикально вверх снаряд разорвался в верхней точке траектории на два осколка массой m1 и m2 (рис. 32.1). Чему равно отношение скоростей осколков после разрыва? (Под скоростями до и после разрыва или столкновения здесь и далее мы понимаем […]...
- Движение системы тел. Учет трения со стороны внешних тел 1. Движение тел в одном направлении Движение поезда Пусть поезд едет с постоянной скоростью по горизонтальной дороге. При этом вертикальные силы, действующие на любой из вагонов и на локомотив (сила тяжести и сила нормальной реакции), уравновешивают друг друга. (Тепловоз или электровоз, который тянет поезд.) Рассмотрим горизонтально направленные силы. Начнем с последнего вагона (рис. 23.1). На […]...
- Закон сохранения энергии В общем случае тело обладает одновременно как кинетической, так и потенциальной энергией. Их сумму называют Полной механической энергией: E = Eк + Eп (15.1) Это понятие было введено в 1847 г. 26-летним немецким ученым Г. Гельмгольцем. Что происходит с полной механической энергией по мере движения тела? Чтобы выяснить это, рассмотрим простое явление. Бросим вертикально вверх […]...
- План-конспект урока по физике по теме: Импульс тела. Закон сохранения Цель урока: повторить понятия импульса тела, замкнутой системы, уточнить условия применения закона сохранения импульса, сформировать понятие «импульс силы», представить второй закон Ньютона в новой формулировке, совершенствовать навыки решения вычислительных и качественных задач. Ход урока — Анализ контрольной работы — Повторение основных понятий об импульсе тела (из ранее изученного) 1 Что называется импульсом тела? 2 В […]...
- Закон сохранения внутренней энергии и уравнение теплового баланса Согласно уравнению (33.3), изменение внутренней энергии системы равно сумме работы внешних сил и количества теплоты, полученного системой: ΔU = A + Q. Из этого уравнения следует, что если систему тел изолировать от внешних воздействий, то ее внутренняя энергия будет оставаться неизменной, несмотря ни на какие процессы, происходящие внутри системы. Действительно, в этом случае А = […]...
- Решение задач по физике (механика) Цель урока: продолжить формирование умения рассчитывать механическую работу, мощность, КПД простых механизмов, применять законы сохранения при решении качественных и вычислительных задач. Ход урока Проверка домашнего задания методом решения качественных задач 1. Человек толкнул вагонетку. Она пришла в движение по горизонтальному пути. Совершил ли человек работу? ( Да) 2. Когда расходуется меньше энергии при запуске искусственного […]...
- Первый закон термодинамики Закон сохранения энергии. К середине XIX в. многочисленные опыты ученых доказали, что механическая энергия никогда не пропадает бесследно. Опускаются гири, вращающие лопасти в сосуде с ртутью, и температура ртути повышается на строго определенное число градусов. Падает молот на кусок свинца, и свинец нагревается тоже вполне определенным образом. На основании множества подобных наблюдений и обобщения опытных […]...
- Связь между массой и энергией Цель урока: формировать у учащихся представление об универсальной связи массы и энергии, как о формуле краткой по форме и всеобъемлющей по содержанию. Ход урока Проверка домашнего задания методом выполнения самостоятельной работы Вариант – 1. №1. Определить длину стержня для наблюдателя, относительно которого стержень перемещается со скоростью 0,6 с. Длина, покоящегося, стержня равна 1 м. Решение. […]...
- План-конспект урока по физике. Тема: Первый закон термодинамики Цель урока: сформулировать закон сохранения энергии, распространенный на тепловые явления, привести данные об истории открытия закона, развивать умение решения задач с использованием закона сохранения энергии для тепловых процессов. Ход урока Проверка домашнего задания методом выполнения самостоятельной работы Вариант – 1 1. Что называют внутренней энергией тела? 2. Формула для вычисления работы газа. 3. Внутренняя энергия […]...
- Три закона Ньютона Раздел механики, в котором изучают, как взаимодействие тел влияет на их движение, называют динамикой. Основные законы динамики открыли итальянский ученый Галилео Галилей и английский ученый Исаак Ньютон. Вы изучали эти законы в курсе физики основной школы. Напомним их. 1. Первый закон ньютона (закон инерции) Повторим один из опытов, которые поставил итальянский ученый Галилео Галилей. Поставим […]...
- Движение системы тел. Учет трения между телами системы 1. Тела в начальном состоянии движутся друг относительно друга Пусть на гладком столе лежит доска длиной L и массой mд. На краю доски находится небольшой брусок массой mб (рис. 24.1). Коэффициент трения между бруском и доской μ. В начальный момент доска покоится, а бруску толчком сообщают начальную скорость 0, направленную вдоль доски. Как будут двигаться […]...
- План-конспект урока по физике по теме: Принцип относительности Галилея Цель урока: сформулировать принцип относительности Галилея; показать на примере, что Земля не является строго инерциальной системой отсчета; продолжить формирование умений решать вычислительные и качественные задачи на применение основных законов механики. Ход урока Проверка домашнего задания методом проведения самостоятельной работы. ВАРИАНТ – 1 На движущийся предмет действует несколько сил, результирующая, которых равна нулю. Какой из представленных […]...
- Механическая работа. Мощность 1. Определение работы С механической работой (работой силы) вы уже знакомы из курса физики основной школы. Напомним приведенное там определение механической работы для следующих случаев. Если сила направлена так же, как перемещение тела, то работа силы A = Fs (1) В этом случае работа силы положительна. Если сила направлена противоположно перемещению тела, то работа силы […]...
- Применение уравнения теплового баланса 1. Первый закон термодинамики и уравнение теплового баланса До сих пор мы рассматривали первый закон термодинамики применительно к газам. Отличительной особенностью газа является то, что его объем может значительно изменяться. Поэтому согласно первому закону термодинамики переданное газу количество теплоты Q равно сумме совершенной газом работы и изменения его внутренней энергии: Q = ∆U + Aг. […]...
- Сила реакции опоры. Вес Положим камень на горизонтальную крышку стола, стоящего на Земле (рис. 104). Поскольку ускорение камня относительно Земли равно пулю, то по второму закону Ньютона сумма действующих на него сил равна нулю. Следовательно, действие на камень силы тяжести m — g должно компенсироваться какими-то другими силами. Ясно, что под действием камня крышка стола деформируется. Поэтому со стороны […]...
- План-конспект урока по физике по теме: Решение задач Цель урока: формировать умение самостоятельно мыслить, выполнять решение в общем виде, проводить операции с наименованиями единиц, находить наиболее рациональные способы решения задач. Ход урока Проверка домашнего задания методом фронтального опроса — При каких условиях появляются cилы трения? — От чего зависит направление и модуль силы трения покоя? — В каких пределах может применяться сила трения […]...
- Внутренняя энергия В механике различают два вида энергии: кинетическую и потенциальную. Но когда говорят об этих видах энергии, то обычно приводят примеры крупных, заметных глазу тел: движущегося поезда, летящего футбольного мяча, поднятого камня. Привыкнув связывать представление об энергии с подобными примерами, довольно трудно бывает перейти к явлениям в мире микрочастиц. Однако движение происходит и во внутреннем мире […]...
- Вес и невесомость 1. Вес тела, движущегося с ускорением В § 12 мы доказали, что вес покоящегося тела равен действующей на это тело силе тяжести. Рассмотрим теперь вес тела, движущегося с ускорением. Это ускорение телу сообщает равнодействующая силы тяжести и силы, действующей со стороны опоры (или подвеса). Поэтому, говоря далее об ускорении тела, мы должны понимать, что оно […]...