Решение задач с применением уравнения Менделеева Клапейрона
Цель урока: продолжить формирование умения решать качественные, вычислительные и графические задачи на применение уравнения Менделеева-Клапейрона и газовых законов.
Проверка домашнего задания методом ответов на вопросы и решения задач.
1. Сформулируйте и экспериментально обоснуйте:
А) закон Бойля – Мариотта;
Б) закон Гей – Люссака
В) закон Шарля
2. Постройте изотерму в осях координат: (P,V), (P, T), (V,T).
3, Постройте изобару в осях координат: (V,T); (P, T); (P, V)
4 Постройте изохору в осях координат: (P, T); (V,
Решите качественные задачи.
А) Почему пузырьки воздуха, поднимаясь в воде вверх, увеличиваются в объеме?
Б) Плавательный пузырь выходит через рот наружу, если глубоководную рыбу вынуть из воды. Почему это происходит?
В) Празднуя окончание строительства тоннеля под Темзой в Англии, городские чиновники отмечали это событие прямо в тоннеле, но шампанское не пузырилось как обычно. Как будто это было обычное вино. Когда, выпившие шампанское чиновники поднялись на поверхность, вино
стало раздувать их желудки и бурлить внутри. Догадались срочно спускать обратно в тоннель некоторых из них. Почему опасно пить шампанское под Землей?
Г) Почему с горящих поленьев с треском слетают искры?
Д) Почему из стеклянной бутылки вылетает пробка, если в нее налить газированную воду, а потом
поставить в теплое место?
Решите графическую задачу.
На рисунке изображены циклические процессы, происходящие в 1 моле идеального газа.
Дайте характеристику каждому из циклов по плану:
— назовите каждый цикл процесса;
— как изменяются термодинамические параметры газа при переходе из одного состояния в другое?
— напишите уравнения, описывающие каждый цикл;
— изобразите этот процесс в других координатах
V P P
3 2 1 2 1 2
1 3 3
0 T 0 T 0 V
1 — 2; V↑, T↑ ; p = const, V₁/T₁ = V₂/T QUOTE ; 2 — 3; T↓P↑; V = const, P₂/T₂= P3/T3
3 — 1; T↓P↑; V = const; P₂/T₂ = P3/T3;
Вычислительные задачи. 1 Найдите первоначальный объем, если давление газа увеличилось в 1,5 раза, а объем его уменьшился при этом на 30 мм.
Решение. P₁V₁ = P₂V₂; ΔV = V₁ — V₂; V₂ = V₁ — ΔV; P₁V₁ = P₂(V₁ — ΔV); V₁ (P₂ — P₁) = P₂·ΔV;
V₁· 1/3P₂ = p₂·ΔV; V₁ = 3·ΔV = 90 (мм)
2 Со дна водоема всплывает пузырек воздуха. На глубине 6 м он имел объем 10 мм³. Найти чему будет равен объем пузырька около поверхности воды.
Решение. P₁ V₁ = P₂ V₂; P₁ = ρ·g·h + P₀; P₂ = P₀; где Р₀ — атмосферное давление.
(ρ g h + P₀)V₁ = P₀V₂; V₂ = (ρ g h + P₀) V₁/ P₀; V₂ = 16 (мм³)
Подведем итоги урока.
Домашнее задание: § 70, 71 (повт.) упр. 13 № 11, 12.
Related posts:
- Газовые процессы 1. Изобарный процесс (при постоянном давлении) Экспериментальное изучение газов начнем с процессов, в которых один из трех макропараметров данной массы газа (давление p, объем V или температура T) не изменяется. Такие процессы называют изопроцессами. (От греческого слова «изос» — равный). Рассмотрим сначала процесс, который происходит при постоянном давлении. Его называют изобарным. (От греческого слова «изос» […]...
- Первый закон термодинамики 1. Внутренняя энергия газа Из курса физики основной школы вы знаете, что сумму кинетической энергии хаотического движения частиц и потенциальной энергии их взаимодействия называют внутренней энергией. Внутренняя энергия U данной массы одноатомного идеального газа равна произведению средней кинетической энергии одной молекулы на число молекул N: U = N. ? 1. Объясните, почему внутренняя энергия U […]...
- Применение первого закона термодинамики к газовым процессам 1. Изопроцессы и адиабатный процесс Напомним, что согласно первому закону термодинамики количество теплоты Q, переданное газу, связано с изменением внутренней энергии газа ∆U и работой газа Aг соотношением Q = ∆U + Aг. (1) Часто требуется применять первый закон термодинамики к газовым процессам, представляющим собой последовательность изопроцессов (иногда добавляется еще адиабатный процесс). Рассмотрим, как находить […]...
- Уравнение состояния идеального газа 1. Закон Авогадро Из уравнения Клапейрона (см. предыдущий параграф) следует, что в процессах, происходящих с данной массой газа, произведение давления газа p на его объем V, деленное на абсолютную температуру T газа, постоянно: (pV)/T = const. Однако если масса газа в процессе изменилось, то значение выражения (pV)/T тоже изменится! Это очень легко проверить. Поставим опыт […]...
- План-конспект урока по физике. Тема: Газовые законы Цель урока: установить зависимость между двумя термодинамическими параметрами при неизменном значении третьего, формировать умение объяснять законы с молекулярной точки зрения, научится изображать графики изопроцессов. Ход урока Проверка домашнего задания. 1. Фронтальная беседа с классом — Что называется параметрами состояния? — Какие термодинамические параметры характеризуют состояние газа? — Какое состояние называется термодинамическим равновесием? — Почему в […]...
- Применение уравнения состояния идеального газа к различным процессам С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса и один из трех параметров — P, V или T — остаются неизменными. Количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра называют Газовыми законами. Процессы, протекающие при неизменном значении одного из параметров, называют Изопроцессами. (От греческого слова «изос» — равный.) […]...
- Применение уравнения состояния идеального газа 1. Учет гидростатического давления Сжатие воздуха в сосуде, погруженном в воду Рассмотрим следующую ситуацию. Пустую открытую стеклянную бутылку опускают в воду на глубину h. ? 1. Объясните, почему при погружении бутылки дном вниз воздух из нее выходит пузырьками и бутылка наполняется водой (рис. 46.1). ? 2. Почему при этом бутылка сразу тонет? ? 3. Объясните, […]...
- Абсолютная температура и средняя кинетическая энергия молекул 1. Основное уравнение молекулярно-кинетической теории Идеальный газ. Если потенциальной энергией взаимодействия молекул в газе можно пренебречь по сравнению с кинетической энергией их хаотического движения, то можно считать, что вся внутренняя энергия газа — это сумма кинетических энергий его молекул. Такую упрощенную модель реального газа называют идеальным газом. Молекулярно-кинетическая теория идеального газа объясняет свойства газов, рассмотренные […]...
- Работа в термодинамике Работа в механике и термодинамике. В механике работа определяется как произведение модулей силы и перемещения, умноженное на косинус угла между ними. Работа совершается при действии силы на движущееся тело и равна изменению кинетической энергии тела. В термодинамике движение тела как целого не рассматривается и речь идет о перемещении частей макроскопического тела друг относительно друга. В […]...
- Решение задач кинематики. Задача «погоня» Прежде чем приступить к рассмотрению конкретных задач о погоне, договоримся о следующем. Будем называть погоней ситуацию, когда два тела движутся в одном направлении друг за другом. Например, один автомобиль на прямой дороге стремится догнать другой, хищник гонится за своей добычей и т. п. Решение задачи «погоня» заключается в ответе на вопрос: может ли одно тело […]...
- Упражнения и итоги «Уравнение состояния идеального газа. Газовые законы» Упражнения Газ сжат изотермически от объема V1 = 8 л до объема V2 = 6 л. Давление при этом возросло на Δp = 4 кПа. Каким было начальное давление p1? Компрессор, обеспечивающий работу отбойных молотков, засасывает из атмосферы V = 100 л воздука в секунду. Сколько отбойных молотков может работать от этого компрессора, если для […]...
- Повторно – обобщающий урок по теме: Молекулярно – кинетическая теория идеального газа Цель урока; повторить и систематизировать знания по теме, совершенствовать умение логически мыслить, обобщать, решать качественные, графические и расчетные задачи. Ход урока Проверка домашнего задания в виде беседы с учащимися. 1. Какие явления рассматривает молекулярно – кинетическая теория? 2. Прокомментируйте основные положения МКТ. 3. Какими опытами были доказаны эти положения? 4. Модель какого вещества используется в […]...
- Давление газа Мы знаем, что газы в отличие от твердых тел и жидкостей заполняют весь сосуд, в котором они находятся (например, стальной баллон для хранения газов, камеру автомобильной шины и т. д.). При этом газ оказывает давление на стенки, дно и крышку баллона или камеры, в которых он находится. Чем обусловлено это давление? Молекулы газа беспорядочно движутся. […]...
- Уравнение состояния идеального газа Уравнение состояния. Мы детально рассмотрели поведение идеального газа с точки зрения молекулярно-кинетической теории. Была определена зависимость давления газа от концентрации его молекул и температуры (формула 2.10). На основе этой зависимости можно получить уравнение, связывающее все три макроскопических параметра P, V и T, характеризующие состояние данной массы достаточно разреженного газа. Это уравнение называют уравнением состояния идеального […]...
- Тепловые двигатели. Второй закон термодинамики 1. Принцип действия и основные элементы теплового двигателя В курсе физики основной школы вы уже познакомились с различными видами тепловых двигателей и их устройством. Тепловые двигатели сыграли большую роль в истории человечества и сохраняют огромное значение сегодня. Они движут автомобили, вращают турбины тепловых электростанций, разгоняют космические корабли. Принцип действия теплового двигателя Тепловые двигатели названы так […]...
- Решение задач кинематики в общем виде Мы с вами научились решать задачи с конкретными числовыми значениями. Освоим решение задач, в которых величины, характеризующие движение тел (начальные координаты, скорости и т. п.), определены не численно, а заданы в буквенном виде. В этом случае говорят о решении задачи в общем виде. Решение задач в общем виде очень распространено. Оно позволяет упростить преобразования выражений, […]...
- Закон Архимеда. Плавание тел Вы уже знаете, что внутри жидкости в любой точке существует гидростатическое давление. Поэтому если внутрь жидкости в сосуде поместить тело (например, шар), то на все точки его поверхности будут действовать силы гидростатического давления (рис. 165, а). Определим сумму этих сил. Для этого рассмотрим второй такой же сосуд, заполненный, как и первый, такой же жидкостью (рис. […]...
- Задачи и упражнения по теме «Оптические явления» 125. К какому виду излучений относятся электромагнитные волны частотой 500 ТГц, 400 ГГц, 300 МГц, 900 ТГц, 10 кГц? Чему равна длина волны этих излучений (в вакууме)? 126. К какому виду излучений относятся электромагнитные волны частотой 100 кГц, 700 ТГц, 500 ГГц, 1000 ТГц, 600 МГц? Чему равна длина волны этих излучений (в вакууме)? 127. […]...
- Лабораторные работы по физике, 10 класс 6. Опытная проверка закона Бойля-Мариотта Цель работы: проверить на опыте обратно пропорциональную зависимость между давлением газа и его объемом при постоянной температуре. Оборудование: стеклянная трубка с пробкой, гибкая трубка (например, резиновая) длиной около 1,5 м, стеклянная или прозрачная пластмассовая воронка, метровая линейка, два штатива с лапками. Описание работы В один конец гибкой U-образной трубки (рис. […]...
- Идеальный газ в молекулярно-кинетической теории Идеальный газ. Идеальный газ с точки зрения молекулярно-кинетической теории простейшая физическая модель реального газа. Под моделью в физике понимают не увеличенную или уменьшенную копию реального объекта. Физическая модель — это создаваемая учеными общая картина реальной системы или явления, которая отражает наиболее существенные, наиболее характерные свойства системы. В физической модели газа принимаются во внимание лишь те […]...
- План-конспект урока по физике. Тема: Работа в термодинамике Цель урока: вывести формулу для определения работы расширяющегося газа при постоянном давлении, познакомить учащихся с геометрической интерпретацией работы для изобарного процесса и в случае, когда Р‡соnst Ход урока Проверка домашнего задания методом фронтального опроса 1. Что изучает термодинамика? 2. Что называется внутренней энергией? Может ли тело обладать внутренней энергией, но не иметь механической энергии? Может […]...
- Способы описания прямолинейного движения Простейшим видом движения точечного тела является движение вдоль прямой. Такое движение называют прямолинейным. Рассмотрим достаточно простой пример прямолинейного движения. Представим себе, что на столе лежит ученическая линейка. В том месте, где у линейки находится нулевая отметка, лежит крупинка сахара. Муравей, схватив крупинку сахара в тот момент, когда мы включили секундомер, начинает бежать вдоль края линейки […]...
- Расчет массы и объема тела Для того чтобы определить плотность вещества, надо массу тела разделить на его объем: (10.1) Массу тела можно определить с помощью весов. А как найти объем тела? Если тело имеет форму прямоугольного параллелепипеда (рис. 24), то его объем находится по формуле V = аbс. Если же у него какая-то другая форма, то его объем можно найти […]...
- Система отсчета, траектория, путь и перемещение Механика изучает механическое движение, то есть изменение положения тел друг относительно друга с течением времени. Основная задача механики — определение положения тел в заданный момент времени, если известны положение и скорость тел в начальный момент. Движение тел зависит от взаимодействия между ними. Но для изучения взаимодействий тел нужно овладеть понятиями, с помощью которых описывают движение […]...
- План-конспект урока по физике. Тема: Применение первого закона термодинамики к изопроцессам Цель урока: продолжить изучение 1-го закона термодинамики, рассмотреть изопроцессы с новой, энергетической точки зрения, дать понятие об адиабатическом процессе, познакомить учащихся с алгоритмом решения задач на применение уравнения теплового баланса. Ход урока Проверка домашнего задания методом индивидуального опроса 1. Кратко изложить историю открытия закона сохранения энергии. 2. Почему невозможно построить вечный двигатель? 3. Для нагревания […]...
- Контрольная работа по теме: Молекулярно – кинетическая теория идеального газа Цель урока: проверить знания учащихся и выяснить степень усвоения материала данной темы. Ход урока Организационный момент. Вариант -1 (1 – го уровня) 1. Рассчитайте молекулярную массу кислорода — О₂. ( Ответ: 32·10-3 кг/моль) 2. Имеется 80 г кислорода, вычислить количество молей в нем. (Ответ: 2,5 моля) 3. Вычислить давление газа на стенки баллона, если известно, […]...
- Примеры решения задач к главе «Уравнение состояния идеального газа. Газовые законы» В задачах на использование газовых законов встречаются обычно следующие ситуации: А) известны макроскопические параметры в начальном состоянии газа и некоторые параметры в конечном состоянии. Если при переходе из начального состояния в конечное один из параметров не меняется, то при изотермическом процессе можно пользоваться законом Бойля-Мариотта в форме (3.6) или в эквивалентной форме , следующей из […]...
- Применение первого закона термодинамики к различным процессам С помощью первого закона термодинамики можно делать важные заключения о характере протекающих процессов. Рассмотрим различные процессы, при которых одна из физических величин остается неизменной (изопроцессы). Пусть система представляет собой идеальный газ. Это самый простой случай. Изохорный процесс. При изохорном процессе объем не меняется и поэтому работа газа равна нулю. Изменение энергии согласно уравнению (4.11) равно […]...
- Примеры решения задач и упражнения к главе «Основы молекулярно-кинетической теории» При решении большей части задач первой главы нужно уметь определить молярные массы веществ. Для этого по известным из таблицы Менделеева относительным атомным массам надо определить относительную молекулярную массу, а затем и молярную массу по формуле M = 10-3 Mr, кг/моль, где M — молярная масса; Mr — относительная молекулярная масса. Во многих задачах требуется по […]...
- Примеры решения задач «Температура. Энергия теплового движения молекул» При решении задач этой главы используется формула (2.6), определяющая абсолютную температуру, формула (2.9), связывающая среднюю энергию хаотического движения с температурой, и формула (2.12) для средней квадратической скорости молекул. Некоторые задачи удобно решать, используя формулу (2.10), связывающую давление газа с концентрацией молекул и абсолютной температурой. Кроме того, нужно знать значение постоянной Больцмана (2.7). 1. Чему равно […]...
- Положение тела в пространстве Наверняка каждый из вас неоднократно договаривался с другом, родителями или учителем о встрече. При этом всегда возникал вопрос: где встретиться? Хорошо, если намеченное место встречи было известно, и вы могли его назвать или показать. Но как быть, если вы договариваетесь о месте встречи по телефону или сообщаете о нем в письме? Обратимся за примером к […]...
- Прямолинейное равномерное движение 1. Скорость Поставим опыт Толкнем тележку, находящуюся на горизонтальной поверхности, по которой она может двигаться практически без трения (можно использовать тележку на воздушной подушке). На рисунке 2. 1 изображены положения тележки через равные промежутки времени. Мы видим, что за разные промежутки времени тележка совершает одинаковые перемещения. Движение тела, при котором оно за любые равные промежутки […]...
- План-конспект урока по физике. Тема: Уравнение состояния идеального газа Цель урока: сформировать умение описывать состояние термодинамической системы данной массы газа с помощью трех макроскопических параметров: давления, объема, температуры; выяснить физический смысл универсальной газовой постоянной; развивать навыки решения задач. Ход урока Анализ самостоятельной работы. Изучение нового материала. Вывод уравнения состояния газа. (Выведем уравнение состояния, для любой массы газа, измеренной в молях. Для этого будем использовать […]...
- Насыщенный пар 1. Испарение и конденсация Как вы знаете, жидкости испаряются, то есть превращаются в пар. Например, лужи после дождя высыхают. Испарение жидкости обусловлено тем, что некоторые ее молекулы благодаря толчкам своих «соседей» приобретают кинетическую энергию, достаточную для того, чтобы вырваться из жидкости. В результате испарения над поверхностью жидкости всегда находится пар, Это газообразное состояние вещества. Водяной […]...
- Реактивное движение. Освоение космоса 1. Реактивное движение Из закона сохранения импульса следует: чтобы разогнаться, надо что-то оттолкнуть назад. Например, когда человек разбегается, он ногами толкает назад дорогу; автомобиль толкает назад дорогу вращающимися ведущими колесами; гребец веслом толкает назад воду. А что можно оттолкнуть назад, когда вокруг ничего нет — как у ракеты в открытом космосе? В таком случае надо […]...
- Решение задач кинематики. Задача «обгон» Рассмотрим еще одну очень важную с практической точки зрения задачу. Пусть по прямой двухполосной дороге едут грузовик с прицепом и легковой автомобиль. Модули их скоростей равны соответственно |vг| = 20 м/с и |vл| = 30 м/с. Известно, что длина легкового автомобиля l1 = 5 м, а грузовик вместе с прицепом имеет длину l2 = 35 […]...
- План-конспект урока по физике. Тема: Внутренняя энергия Цель урока: сформировать представление о внутренней энергии тела как функции состояния тела, установить зависимость внутренней энергии идеального газа от макроскопических параметров, продолжить формирование умения применять полученные знания при решении задач. Ход урока Изучение нового материала 1. Знакомство с целями и задачами термодинамики, изучающей тепловые процессы без учета молекулярного строения тел. 2. Законы термодинамики были записаны […]...
- Решение задач по термодинамике Цель урока: продолжить формирование умения выполнять термодинамическое описание процессов: вычисление работы, количества теплоты, внутренней энергии и других параметров системы, развивать навыки самостоятельно мыслить, решать задачи разными способами. Ход урока Проверка домашнего задания методом выполнения тестового задания Вариант – 1 1. Внутренняя масса реального газа… А) Не зависит ни от температуры, ни от объема. Б) Не […]...
- Решение задач по физике (механика) Цель урока: продолжить формирование умения рассчитывать механическую работу, мощность, КПД простых механизмов, применять законы сохранения при решении качественных и вычислительных задач. Ход урока Проверка домашнего задания методом решения качественных задач 1. Человек толкнул вагонетку. Она пришла в движение по горизонтальному пути. Совершил ли человек работу? ( Да) 2. Когда расходуется меньше энергии при запуске искусственного […]...
- Закон Архимеда Проделаем опыт (рис. 133). Подвесим к пружине 1 небольшое ведерко 2 и тело цилиндрической формы 3. Отметив положение стрелки-указателя на штативе (рис. 133, А), поместим тело в сосуд, наполненный жидкостью до уровня отливной трубки. При этом часть жидкости, объем которой равен объему тела, выльется из сосуда в находящийся рядом стакан (рис. 133, Б). Одновременно с […]...